Solution 8

Supplementary Problems

1. Let \mathbf{r}_{1} and \mathbf{r}_{2} be on $[a, b]$ and $[\alpha, \beta]$ respectively that describe the same curve C. It has been shown that there exists some φ maps $[a, b]$ one-to-one onto $[\alpha, \beta], \varphi^{\prime}(t)>0$, such that $\mathbf{r}_{2}(\varphi(t))=\mathbf{r}_{1}(t)$ when both parametrization runs in the same direction. When they runs in different direction, $\varphi^{\prime}(t)<0$. Using this fact to prove that in both cases,

$$
\int_{a}^{b} f\left(\mathbf{r}_{1}(t)\right)\left|\mathbf{r}_{1}^{\prime}(t)\right| d t=\int_{\alpha}^{\beta} f\left(\mathbf{r}_{2}(z)\right)\left|\mathbf{r}_{2}^{\prime}(z)\right| d z
$$

In other words, the line integral

$$
\int_{C} f d s
$$

is independent of the choice of parametrization with the same or opposite direction.
Solution. Differentiating the relation $\mathbf{r}_{2}(\varphi(t))=\mathbf{r}_{1}(t)$ and using the chain rule, we get

$$
\mathbf{r}_{2}^{\prime}(z) \varphi^{\prime}(t)=\mathbf{r}_{1}^{\prime}(t)
$$

So

$$
\left|\mathbf{r}_{2}^{\prime}(z) \| \varphi^{\prime}(t)\right|=\left|\mathbf{r}_{1}^{\prime}(t)\right|, \quad z=\varphi(t)
$$

We have

$$
\begin{aligned}
\int_{\mathbf{r}_{2}} f d s & =\int_{\alpha}^{\beta} f\left(\mathbf{r}_{2}(z)\right)\left|\mathbf{r}_{2}^{\prime}(z)\right| d z \\
& =\int_{\alpha}^{\beta} f\left(\mathbf{r}_{2}(z)\right) \frac{\left|\mathbf{r}_{1}^{\prime}(t)\right|}{\left|\varphi^{\prime}(t)\right|} d z
\end{aligned}
$$

When $\varphi(a)=\alpha, \varphi(b)=\beta$ and $\varphi^{\prime}>0$, by the change of variables formula, we continue

$$
\begin{aligned}
& =\int_{a}^{b} f\left(\mathbf{r}_{2}(\varphi(t))\right) \frac{\left|\mathbf{r}_{1}^{\prime}(t)\right|}{\left|\varphi^{\prime}(t)\right|} \varphi^{\prime}(t) d t \\
& =\int_{a}^{b} f\left(\mathbf{r}_{1}(t)\right)\left|\mathbf{r}_{1}^{\prime}(t)\right| d t \\
& =\int_{\mathbf{r}_{1}} f d s .
\end{aligned}
$$

On the other hand, when $\varphi(a)=\beta, \varphi(b)=\alpha$ and $\varphi^{\prime}<0$, we have

$$
\begin{aligned}
& =\int_{b}^{a} f\left(\mathbf{r}_{2}(\varphi(t))\right) \frac{\left|\mathbf{r}_{1}^{\prime}(t)\right|}{-\varphi^{\prime}(t)} \varphi^{\prime}(t) d t \\
& =\int_{a}^{b} f\left(\mathbf{r}_{1}(t)\right)\left|\mathbf{r}_{1}^{\prime}(t)\right| d t \\
& =\int_{\mathbf{r}_{1}} f d s
\end{aligned}
$$

The same result holds.

